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I. INTRODUCTION

We consider below the statistical behavior of scalar variables in
turbulent flows. The presence of chemical reactions requires statistical
3 3 ) ] ) [} ] s
models for third and higher moments (e.g., A 2B and K'A'“B') in order to
close the rate equations. A realistic analysis should not be restricted to
small fluctuations. The results presented here are completely free from
such restrictions. The essential points to be demonstrated are

1) Given A and ;77-, we can obtain stringent statistical bounds on
A'“B' and related moments. These bounds are found to be of interest in
discussing the CalTech experiments (e.g., as reduced by Konrad*).

2) Maximum and minimum third (and higher) moments can be reached only
with Dirac functions (i.e., discrete distributions).

3) We can always realize a statistically acceptable choice of A and
A'" with a few Dirac functions (the minimum number is two distinct ones).

The statements given above hold true when several moments (rather than
only A and A' ) are given as well as when the means of several variables
are given (e.g., A, A, o, a }. As one consequence, we shall see that
we can find, for the purposes of modeling, a discrete distribution that
represents the desired set of moments and that is statistically legitimate
for all allowed values of the derived moments (box model).

The role of the higher moments can be illustrated with a second-order
chemical reaction

A+B-~+C
We have the familiar rate equation

dA
at - at

It follows that the product, AB , satisfies
4 (n8) = -k(nB? + A%B)

In terms of the Reynolds decomposition
A=A+A
we find, in the absence of temperature fluctuations,

*Konrad, J.H., "An Experimental Investigation of Mixing in Two-Dimensional
Turbulent Shear Flows with Applications to Diffusion-Limited Chemical
Reactions.”" Graduate Aero.Labs., California Institute of Technology, Pro-
ject SQUID Tech. Report CIT-8-PU (1976)




2Re 4 nln

9 (AB + A7) = -K(AB® + A%B)
where
8% = A+ A + 802>
-RB2 +AB'2+28AB +ABC
—

We shall use below this third moment, AB~ , to test the stringency of the
statistical bounds derived.

When temperature fluctuations are included, a joint distribution in T,
A and B need be assumed to close the rate equations. Although we do not
develop temperature models in detail in this report, we note that many of the
statistical (lower) bounds derived for A do apply to the temperature
fluctuations; for example, the third moment of the concentration satisfies

A

|2 -
—73-2.5:-' (;T? - AZ)
A

forany 0 <A<1 and 0 g_RT?-g_ﬂ(] ~ A); similarly, the temperature
third moment satisfies
2
T2 -
;Tj > I:— (;T? - Tz)
T

—

for any T and any ';T? positive. The usefulness of the A'3 bound is
shown below by ruling out the model ;T§.= 0 over the edges of a mixing
layer.

The statistically allowed values of any set of moments can be shown
(Appendix 1) to form a domain that is necessarily convex; therefore, the
domain has no "holes." This property is very useful when a numerical scan
is performed.

The statistical bounds that we obtain are "sharp”; that is, we can
prove in each case that the equal sign is realized by a (unique) probability
distribution that is discrete. It follows that the bounds obtained are
"best bounds" and cannot be improved.

Although we apply here our analysis to mixtures with two species (He

and Nz), the results derived for the (molar) concentration A (and its

2




conjugate B =1 - A) apply to each concentration of an n-component
mixture.

We develop a model for the probability of the molar fraction by
choosing a discrete distribution that realizes the mean and second moment of "
the molar fraction as well as the mean and second moments of the mass
fraction. The model selected contains a free parameter. Since the empir-
ical evidence is that the mean entropy of mixing is below the maximum

allowed statistically (in qualitative agreement with the dominance of large
scale structures in the turbulent mixing), we fix our free parameter so as !
to minimize the mean ertropy of mixing.




IT. STATISTICAL ANALYSIS

To illustrate the main features of our statistical analysis, we discuss
below in detail the behavior of the second moments and we give results for
the third and fourth moments.

We introduce the analysis with a useful diagram, the "box" diagram which
gives a concise representation of a (one-dimensional) probability
distribution.

Given a P(A) > 0, the quantity

AO
ﬁ%)=f P(A) dA (1)
0

is the fraction of time during which A < A0 . The graph of the inverse of
the map t(A) 1is the box diagram. For example,

P(A) = AS(A-1) + (1-A)s8(A) (2)

gives t(A) = (1-A)H(A) + AH(1-A) where the heaviside function is

| 1 A>0
‘ H(A) =
. 0 A<D

and then, -
0 O0<t<1-A
A(t) = (3)

(see Fig. 1).
We will now consider the bounds on the second moment for a given value
of A . We first observe that

0<Ac<] (4) i

implies the two inequalities
0 < AP(A) ; AP(A) < P(A) (5)

because P(A) > 0 . Integrating both between 0 and 1,

0<Ac<1 (6)
5
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By a similar reasoning, we can prove
A2 < aZ < R (7)

To prove the upper bound, we have successively

A< by (4U}, i.e., the upper bound
p2 <A by (4L), i.e., the lower bound (8)
IY: 5;3 because P > 0, q.e.d.

To prove the lower bounds, we use Reynolds' decomposition

A=A+A (9)

Thus ,

=

= <:(A+-A')2:> = Az + ;77' 3‘52 because A'2 >0, g.e.d.

The bounds on the second moment have been obtained by e]emgg;ary methods.
We can similarly show that the bounds (AZ = A and A2 = A2) are realized
by unigue discrete distribution.

For the upper bound, we have successively

A=Al
A-A=0

and

1
I (A - A%)P(A) dA = 0
0

However, the integrand is positive (or zero) by Eq. (8) and hence the inte-

grand must vanish:

2
)

(A - A")P(A) =0 (10)

If P 1is to be nonzero, we must have A=0 or A=1 and, therefore,

P(A) = (1-€)8(A) + eS(A- 1) (11)




Since A 1is given, € is determined. In fact, by direct computation,
A= € and

P(A) = (1-A)8(A) + AS(A-1)

which is the distribution given in_Eq. (2) above. We note that the P(A)

(12)

that realizes the upper bound of A" , Eq. (12), is uniquely determined by A .

We can view relation (12) as a consequence of (10) and of L. Schwartz'
theorem x&8(A) =0 .

The lower bound is also realized by a unique distribution. We have
from (7L)

32

A
or

1 1 1
f (A% - A%)p(A) dA f (A - A)2P(A) dA =f A'2p(A) dA
0 0 0

As for the upper bound, the integrand is positive or zero and, therefore,

A2

"

1

A'2p(A) = 0

or

(A - B)%p(n) -

|
(o]

It follows that A=A if P#0 , or

P(A) = 6(A - A)

This distribution can be represented by a box diagram as

§(A - R) =

— 1) (CDI

This result completes the proof that both extreme values of RZ are
realized, for given A » by unique, discrete, probability densities.

A summary of the relations obtained so far is obtained in describing
the statically allowed values of A and ;2' as a domain in a plane with

(13)

(14)




coordinates ﬁ, ;? . The domain of moments MIZ(A, A2) is shown in Figure

2 that represents
My, = {? <h<1; A 5_;7-§_é} (15)

We note that the maximum width of the domain occurs at A = 1/2 and is
wlz = 1/4 = .25 . C(Cilearly the maximum width of the statistically allowed
domain should be large compared with the experimental error if a statisti-
cally significant experiment is contemplated. We show below that the Cal
Tech experiments amply fulfill this requirement.

We recast our result in terms of the centered moment ;T?- by means of
the identity

N

Al < Ac - B2

(16)
The domain of statistically allowed (A, XT?5 pairs is readily shown to be,
from Eq. (15)

M'12={05Z\51;0<F52\(1-7\)} (17)

In Figure 3, we show a diagram of MiZ . We illustrate our theoretical
bounds with the Konrad data in Figure 4. In this and similar following
figures of this section

B = N2 concentration (18)

;_:X;_ = similarity variable across the flow (19)
0
M
A=1- —%ﬂgl =0 (The He 1is premixed with A to (20)
N2 achieve molecular mass equality)
5 =1 = Konrad's mass ratio parameter
r = .38 = velocity ratio (He is faster)

In view of the fact that B 1is monotonic in the similarity variable

y/(x-xo) ,» we may plot the experimental data on the diagram of Figure 2

using the B axis as a "stretched" similarity variable. The resulting

diagrams, Figures 4 and 5, show two alternative (and eg%jvalent) representa-
B~ and of its

tions of the second moment of the N2 concentration
8
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statistical bounds as dictated by the corresponding values of B . Konrad

gives pluts of both the Gaussian measure for the second moment v B8'2 and of

the (second order) mixedness parameter
- e e
Al -A oA (21)
AB A

Readings of the reproducibility of the similarity profiles and comparison
of values obtained for the moment B and B® from the distribution
functions vs those obtained from the Konrad plots indicate an "experi-
mental error bar" (or uncertainty) of #0.01 on the scales indicated.
Sensitivity of the bounds to errors in B is estimated by setting B =

50 + 0.01 . Then at y/(x - xo) = 0 {center of flow),
sL, = 20.011 (22)
5U2 2 +0.010 (23)
6W2 2 ¥0.001 (24)
where Wy = U, - L, <0.25 (25)

We see that the width of the statistical bounds is less sensitive to error
than the lower and upper bounds themselves. The equivalent shift in the
similarity variable near y/(x - xo) ~ 0 1is estimated to be

S(y/(x - xo))z -0.004.

In conclusion, statistical analysis of the second moment indicates that
the experiment is clearly statistically significant and that the second-
order fluctuations are on the low side in the central portions of the fiow.

As a final point in the statistical analysis of the second moment, we
give_% constructive procedure whgregxi_given any allowed value of the pair
(A, A°) (or alternatively of (A, A'")), a discrete distribution is found
that realizes the given values. - The construction is based on the results
obtained on the realizability of the extreme values of the moments. In
particular, we have demonstrated that maximal fluctuations are achieved by

discrete distributions. Exploiting the convexity of the domain of values




of (R, ;25 proven in App. 1, we proceed as follows (Fig. 6). At points
a and b we must have

Pa

eS(A) + (1 - €)8(A - 1) (26)

p

b 5(A - Ao) (27)

We now form the (convex) combination

P =P, + (1- )P, (28)

where 0< <1 (29)

The resulting distribution is given by the box diagram, Figure 7. Straight-
forward calculation (best carried out with the general method of the char-
acteristic equation given in Section IV) yields

Al . A,
€=—_——_—_—
17 TR,
-3
e, =1-h- A- A (30)
1-A
.. R- A

where A3 is bounded above and below from the requirements, respectively,
that € be positive and €y be positive

¥

5
; i

Ay (31)

Three special cases are particularly interesting since they correspond
respectively to: (1) maximal A moments; (2) minimal A moments; and
(3) symmetric A and B moments. The three special cases are given in
full in Figure 8. The corresponding cells are obtained from Figure 6.

To discuss moments higher than the second, we need some additional
tools. These are incorporated in the following inequalities:

1. Holder's inequality. f and g are arbitrary and P 1is positive.

10




Then,
1 1/p 1 1/q 1
ffp(a)P(a) da fgq(a)P(a) da > f f(a)g(a)P(a) da
0 0 0
(32)
provided
1/p +1/q = 1 (33)
or
— 1/p —1/q
A A (34)
Equality holds if, and only if,
=2 gq (35)

Furthermore, the Cauchy-Schwarz inequality corresponds to p = q = 2; that
is
Z

- > T (36)

with equality at

f =g (37)
The conditions for equality are essential in our analysis since they allow
us to determine the realizations of the extreme values of the moments.

2. Jensen's inequality. If ¢(a) is convex (i.e., ¢" > 0 throughout
the domain of interest (0 < a < 1)), then

¢(a) > ¢(a) (38)

3. Tchebytcheff's inequality. If f and g are similar (both increase
or both decrease in the interval 0 < a < 1), then

fg > fg (39)

Utilizing these inequalities, we find the lower and upper bound on the

11




third moments, given A and A2 .

—2 _ 2
B enden? B-R) (40)
A 1-A

We confine our discussion to the lower bound since the upper bound can be
treated by similar methods. To establish the bound, we use the Cauchy-
Schwarz inequality, Eq. (36), with

f=A"",g=A~A (41)
The realization of the lower bound is obtained from Eq. (37)
p3/2 o ypl/2 (42)
whose roots are
A=0 and A =X (43)
Therefore, the minimum of A3 is realized by the probability density
P(A) = wS(A) + (1 - w)8(A - 1) (44)
From the given moments,
A= (1-wh (45)
and
A= (1-wpl =R (46)
Hence, wi
A=A (47)
A
Substituting Eq. (47) into (45)
= 72
1-w=h=4 (48)
a2
which completes the determination of P(A) . Using Eq. (44),
VAR Y =2 2
p(A) = A=A sn) + A s(a- A (49)
7 g\ B

12
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In terms of the box diagram, we can symbolize this distribution as in
Figure 8.
An entirely analogous discussion of the upper bound is obtained with

1/2 1/2

f=ABYS ,g=8 (50)

The resulting extremal distribution is P1 of Figure 8.

The statistical bounds established in Eq. (40) are sufficiently
stringent to give information on the experimental values of B~ that can
be obtained from Konrad's paper. In Figure 9, we show the successive
restrictions obtained by statistical considerations when we use the infor-
mation that B is given and when we use both B and EE.. Our estimated
experimental error is the one discussed in the context of Ef . The
maximum width of 1/16 is the maximum of the difference between upper and
Tower bounds in Eq. (40). The sensitivity_of the bounds to errors in B
and B is readily estimated. For E?-= Bg +0.01, at y/(x - xo) =0, is

6L3 = £0.013
6U3 £ 10.010
. Wy = %0.003 , W,y = 0.039
If both B and 82 are varied as
B = B, £0.01
E2'= 53-10.01

we find comparable variations in the bounds.
It is of interest to restate the bounds of Eq. (40) in terms of the
centered moment ;T?" From the relationship

B-R+malens (51)

we obtain

B[ ac- = (52)

Y3 - 52 a2
A (—2 Az) <ASca? U-B -AA
A 1 -

An immediate corollary of these bounds is the determination of the allowed
domains of positive (negative) skewness. These are shown in Figure 10.

13




A third-order mixedness, R3 , is introduced by analogy with Eq. (21)

A.B'Z - AlzB| - L -
2 3 AT - L3
R. = =
3 ' 1 -
us - L3 U3 L3

Clearly, 0 <Ry <1. Aplot is shown in Figures 1la,b for two of

(53)

Konrad's flows in terms of mass fractions. R3 appears to be systemati- i

cally asymmetric.

A discussion of the fourth moment can be carried out somewhat analogous-

ly to our previous discussion of the third moment.

The statistical bounds can be summarized in the following results (the

bounds are proven in Section IV).

1. For given A we have the broad bounds

2. For given A and ;E we have

1

3. If the three moments,

AN O V5

(54)

(55)

(56)

(57)

(58)

A plot of the successively shrinking ranges of the upper and lower bounds
on B’ obtained from Konrad's data is shown in Figure 12.

The sensitivity of the stringent bounds on variations of the lower
moments is approximately the same as for B~ and B” .

14
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The relation between the total moment B
through the Reynolds decomposition which yields

and the Kurtosis is obtained

BY = 8% + 682 B'2 + 43 B'S + B0 (59)
Upon use of (51), we find
& -4 =3 =277
Kurtosisz B =B =3B - 48 32 + 6B B (60)
—7° =2
B (B - B%)

A plot of the Kurtosis across the flow is shown in Figure 13. The Gaussian
value of 3 is nearly achieved at the center.

15
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IIT. INCOMPRESSIBLE FLOW WITH VARIABLE DENSITY

In this section, we characterize the state of an incompressible flow
with variable density by means of appropriate state functions. In parti-
cular, the {(mass) density and the entropy of mixing are calculated as

’ functions of the mass fractions, and the relations among molar and mass
E variables are given.

To establish our notation, we recall that for a single component gas
two measures of density are useful: the mass density p and the molar
density & . They are related through the number of molecules per unit
volume, n (number density)

p=mn=MN (61)

where m = mass of one molecule

4
"

m x Arogadro's number (62)
mass of one mole

The gas constants are related by

-R_k
Rm M m (63)
where k 1is Boltzmann's constant. The equation of state of our ideal gas
thus acquires two possible forms in terms of molar and mass densities:

p = nkT = NRT = PR, T (64)

Correspondingly, for a binary mixture, we have two measures of concentra-
tion:

1. Mass fractions
! P2

v PThen )

with
a+pg=1 (66)

and
0<a<l, 0<Bc<1 (67)
17




2. Molar fractions

Aﬂ;—iw; B mw, (68)

with
A+B=1 (69)

and
0<Ac<1l , 0<B<1 (70)

We adopt by convention the correspondences

1 o € A - heavier

2 «—> B «—> B «<——> lighter

The equation of state for a mixture of two ideal gases can be written,
assuming Dalton's law of partial pressures,

P=p+ P
=NRT=Uﬁ+NQRT (molar form)
= pRT = p(l%+ ﬁ6—> RT (mass fraction form) (71)
a B

An incompressible flow with variable density is characterized by the
assumptions

p = p = constant across the flow
_ (72)
T =T = constant across the flow
We then see that in molar variables
N-= JV} +vJ{2 = N = constant across the flow (73)

while in mass fraction variables

p = constant # constant
al, (B8
(ra MB




We introduce the normalized density

=2 -1 - 8 a4 (75)
* p]ight 1 - Aa 1 - A
where -
MB P
Plignt ~ 7 (76)
M
= 8
A=1-g (77)
a

We can choose without loss of generality, 0 <A <1 . Thus for an
He - N2 mixture, A =6/7 ~ 0.86 and for an H2 - 02 mixture, A = 15/16
= 0.94.

We observe that p, 1is a rather steep function of a for A~ 1
and thus p, is statistically independent from a except for very weak
turbulence. In contrast, p, is linear in A and thus p, and A are
equivalent statistical variables. The relationship between the molar and
mass fractions is therefore noniinear. We have, in fact,

A=(1-8) 725 = Ala) (78)
- 1-
B = 1- ga (79)

and the inverse relations

A
T T-A1T-R) (80)

Q
|

B=(1-2) T—:lziiﬂt-xy

A graph of the relation A(a) dis shown in Figure 14 to show the increasing
statistical independence between A and o with increasing A .

Another nonlinear state function of the mass fraction is the entropy of
mixing. The experimentally observed pure N2 and pure He probability shows

that mixing is very slow on the time scale of turbulence variations
(~ integral scale/root mean square turbulent velocity). Further, the
probability profile of pure He is approximately 2-3 times thicker than the




probability profile of pure N2 in qualitative agreement with the concept
that a pocket of pure N2 folded by a large scale eddy into the He-rich
region should be mixed by molecular diffusion about 2.6 times faster than a
pocket of pure He folded into N, (vHe/vN = /Tﬁ[7ﬁm; = /7 ~ 2.65). We
show below that choosing a probability distribution with low entropy of
mixing is in rather good agreement with experimental evidence. In this
section we calculate the entropy of mixing and give some of its properties.
For a single ideal gas we can write, for the specific entropy,

S=C, n(T/T ) (82)

) -~ R an{p/p
m m

ref ref

where Rm is given by Eq. (63). For a binary mixture, we have

s(mixture) B} aSa ¥ BSB (83)
The entropy density is obtained as psspecific' Substituting (82) into
(83)
T T
S .., =aC &n + BC. an +
mixt Vo Tref Vg Tref
e p
- aR n —E—- gR. gn B (84)
& Pref Pref

We choose for the variable density, incompressible flows that we analyze

Tref = Texp = constant (85)
pM,
Pref = Plight(a) ~ 'Y} (86)
The resulting expression for the specific entropy is
Smixt * - ® [;—a in(as) + zn(eo*)] (87)

which, using Eq. (75), reduces to

= - [a gn o+ L= a%%gjg -a) i — ﬁa & 7 j.Aa:] (88)

M
)
mixt X

S




The normalized entropy density is given by

M
2.1 (1-a)n (1-qa)_ 1-A
p*smixt n 1 - Aa[aln o + 1 _— T % n (1 - AG)

(89)

The noniinear behavior of the specific entropy is shown in Figures 15 and
16 for physically interesting values of A. In Figure 17 we see how the
entropy density combines the nonlinear features of p, and of Smixt .

As a simple example of the behavior of the mean entropy of mixing, we
observe that for A =0 (p, = 1) we have from (88)

SM

—i%-= - (A#n A+B 2nB) (90)

Thus a simple computation shows that the mean entropy associated with the
"nonoverlapping" probability of Figure 1 is exactly zero.

mix

while the entropy of mixing for the distribution of Figure 14 is

B ...

g -_. B
Smix _— M (A an A+ B anB) (92)

A [¢

It is not difficult to show that (91) is minimal for given A while (92)

is maximal for given A .
We shall use below the distribution given by Figure 7. In this case,

- _ % - —2' [ n A3 !Ln(l - A3) }
S .. === (A - A%) +
Ma 1- A3 A3

mi x (93)

Thus for the distribution of Figure 7, gmix/(i - ;§5 is a function of the
single parameter A3 and can be minimized analytically.




IV. GENERAL METHOD FOR THE DETERMINATION OF STATISTICAL BOUNDS

|

In this section, we first outline a general technique to obtain l
statistical bounds that are sharp (i.e., "best bounds") and to establish |
the domain of moments for which they are realized. We then give several
families of useful bounds.

The essence of the method is the close relation between the equalitv
condition in the Cauchy-Schwarz theorem and the characteristic equation ‘
for a discrete probability distribution.

Consider a discrete probability distribution of general form

n
PA) = ) e;6(A - A (94)
i=1
Using Dirac's identity
(A - Ai)a(A - Ai) =0 (95)
we see that
n
TT (A - AP(R) =0 (96)
i=1
so that the algebraic equation
n
(A) =TT (A - A)) = 0 (97)

i=1
determines the locations of the masses of P(A) . We call ¢ =0 the
characteristic equation for (94). We can actually determine the Ai's as
functions of the moments as follows. Multiply (96) by any function F(A)
and integrate from 0 to 1, obtaining

n
<(A)'-IT(A - Ai> =0 (98)
i=1

If we choose, in particular, F = A%=1, A, Az, cers an-1

linear equations for the invariahts of the matrix

, we obtain n
Lij = A(i)éij (no sumon i) (99)

23

PHECEDING PAGE BLANK=-NOT F1LMD

A —————

A




For example, for n = 3 , the linear equations are

3 2 n -
A” - A I1 + AI2 - 13 =0 (100) . }
i
& 73 2, = _
AT - A 11 + A 12 - AI3 =0 (101)
A5 - AT+ A3 - A2, = 0 (102)
1 2 3
where
11 = A1 + A2 + A3 (103) '
K
12 = A1A2 + A1A3 + A2A3 (104)
13 = A1A2A3 (105)
By writing Eqs. (100)-(102) as a matrix equation
- _ - -
YA S 111 A3
B R| |, - At (106)
A3 a2 Iy i
L I L J
we can obtain the Ik 's in terms of the Cramer determinants of (106).
Thus, with obvious notation
» N
5 ok
Ik No (107)

It follows then quite generally from Eq. (97) that the A; 's are the
n roots of an n'th order polynomial whose coefficients follow from (107)

NAT - An'lNl oo+ (D" =0 (108)

The Tocations Ai of the masses are then determined by establishing that
Ni >0 and Nn < No . No
This is established as follows:

is always positive by Hankel's inequality.
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z": zn:<x,iA1+ij_ - <i xiAi><i xjAj>> >0 (109)
i=0 j=0 i j=0

a—r—

for any choice of real X5 - Thus AHJ is positive definite and has a
positive determinant.

The weights €; are also readily characterized through Eq. (97).

n=1
Multiplying (94) by TI (A - A;) , we have in fact, after integration,
i=1

n=1 n-1
THA - A)) =TT (A - A) (110)
i=1 i=1
To obtain the Tower bound on ;ZF , we write the Cauchy-Schwarz inequality
;E;? > ;g? (111)
with the choice
n
g = (-1)" T, (112)
i=]
f=¢+g (113)

Substitution of Eqs. (112) and (113) into (111) yields
[YN L(;\-G, Al, ..., Azn'l)
To obtain the lower bound on AZ"+1 , the upper bound on A2n+1 ,» and the
n+7 1
upper bound on A n+ , we multiply (112) and (113) successively by A< ,
B%, (AB)Lz . For the lower bound on A n+2 , we return to the forms (112)
and (113).
As a simple example of the method, we establish the least upper bound 1
on A” for given A, A2 , and A3 . Since we require the upper bound on

an even moment, we consider the distribution of Figure 18. The character-
istic equation is

g e

AGA - 1)(A - Ag) = 0 (114)

averaging

CAA - DAY - A, AR - 1)) =0 (115)
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Thus,

=

—
A, - A - A (116)

™

To show that A, < 1, we observe that CA(AZ +1-2A)) >0 . The |
location of the "middle" mass is thus determined without knowledge of the
weights. To find € we note that

A(A = 1) = eAy(Ay - 1) (117)
Thus, ;i
- -3
c = (A~ - A) (118)
(A3 - AZ) (a3 - 2a% + A)

the proof that € < 1 is analogous to the one for A3 <1 . Having estab-
lished the realizability of the limit, we construct the Cauchy-Schwarz

inequality with

Ny

1
’3 {

f=A%1 - A)%A (119) ‘
1 1 |
g=A*1-A)* (120) ¥
and find after simplifications that
_ — S 3.2
At ad A - A (121)
A - A°

We note that the proof given establishes Eq. (121) as the "best bound" for
;I in the following sense. The right-hand side of (121) is the least

upper bound on A" for all probability distributions of given A, A, 1
and ;§ .

An important shortcut for the odd moments is obtained from the

"renormalization theorem." Given that we have established
2

1 1 ' 1
f £2(A)D, (A) daf g?(AID(A) dA > f fgb, dA (122)
0 0 0




it follows that
2

1 1 1
f Af201 dA f Ag’D, dA > f AfgD, dA (123)
0 0 0

The proof is simple. Since(122) holds for all D1 , we can choose D1 of
the special form aD2 for any 02 . (The passage from (123) to (122) is
not legitimate, in general.)

We now consider several important families of inequalities. First,
consider a variable o« , 0<a <1, and its conjugate, B8 =1-a,

i.e., either a mass or a mole fraction. Applying Cauchy-Schwarz to

f=a , g=1 (124)
we obtain
132-3;2- (125)
- 1 -
where 1 = D(a) doo . If D 1is a probability density, 1 =1 . The
0

presence of the 1 allows application of the renormalization procedure.
The Cauchy-Schwarz 1imit for (125) is a = A , i.e., a single mixed cell

P(a) = &6(a - a) (126)
Renormalizing (125) by o we find
5 2
a” > = (127)
[ )
—
The Cauchy-Schwarz 1imit is  o3/% = xal’? | jle., a=0,a=2=2%,
Therefore, at equality, o
N A
Pla) = & 6§la- — | + =—— §(a) (128)
2 a 2
o [+ 1
Renormalizing Eq. (125) by B , we find
B < olf - B (129)
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or, eliminating B8 ,

. =2 |
:’Vi ;2-__(2%)_ (130) "
l1-a

The Cauchy-Schwarz limit for Eq. (127) is

1
2

aB? = AB2 (131) ﬁ
with roots

B=0, a=r=%8 (132) |
- ‘

i.e., a pure o and a mixed cell. Therefore, at equality

-\2 - 7 7 -2
P(a) = _il_:_QQ:::G (a _a - a_ ) + __Q__:_Q_:: 5(a) (133)
1-25 + o 1-a 1 - 23 + o

Renormalizing (125) by a8 , we find

2
2, 3, —= (134

aB <aBf-aB

or, eliminating B8 ,

T T (@l -
a < o =

(135

<

Q'\)I QQ’I

o -
The Cauchy-Schwarz 1imit_was discussed following Eq. (114).
The lower bound on a4 requires two mixed cells. We find

— 2
2 3 -2
;Ii;f A (136)
2z =2
a - a
The o inequalities and some of the higher ones are summarized in the
trees, Figures 18 and 19. For all cases, the equality corresponds to a
unique discrete distribution. This situation persists when we include
"skips." These are most readily derived from a generalization of Eq. (125)
which is obtained from HGlder's inequality
2, -1, gn-l (137)
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We observe that for n = 3, Eq. (137) becomes (125). We readily find,
following the tree of Figure 20, the bounds on a3 given only a , i.e.,

a” <a” <« (138)

The equal sign of the Tower bound is realized by (126) just like the Tower
bound on o . Similarly, the bounds on &' given o and o are

—3 . 3.3
2~ 535?-%'—“_—)% (139)
o l1-a

and they are realized, respectively, by (128) and (133). 1In Appendix 3
we prove a strong version of this result.

The inequalities for p,o are most readily obtained by observing that
renormalizing Eq. (125) by the (positive) quantity p, gives us

— —2

P * Px0 > py0 (140)

Using the equation of state and the relations given in Appendix 4, we can
recast (140) either as a lower bound on p, (given a)

- 12

Px > — (141)

1 - Aa

or as a lower bound on p,a (given a)

72

—_— 1 -

p*azi[ — - 1] (142)
1l - Ao

Following the tree of Figure 21 or the (simpler but less obvious) alterna-
tive tree of Figure 22 and using the equation of state, we readily obtain
the lower and upper bounds on p,a__ for given o and ;2- as well as the
upper bound on p,a for given o a° and o« . The Tower bound on 0.0
for given a, o~ and o dinitiates a new tree and is relatively difficult.
We thus give it in detail. We show, in fact, that given

1,a,a , ) (143)

we have the upper bound on ;3
© < ay (144)

<
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where

R0 s - oD
Gy

A[p”,,‘o? (1 - aa) - &]

Clearly the (least) upper bound_on ;j

is equivalent to the (greatest)
Tower bound on p.a (given &,az and o ).
We choose
o
f=p2(a" +c¢) (145)
g=pia (146)

To obtain the Cauchy-Schwarz inequality, we square f and g , obtain the
product fg , and average. The result is

2 ——-3?2 —3
[0*04 . p*az - p*ajj :}+ ZC[ Pxl = Pxpa - p*a} +

& 1+ el - 5 20 (147)

The terms have been arranged as coefficients of <" to facilitate
cancellations.

Using the equation of state relations of Appendix 3, we obtain from
(147) after several cancellations, an inequality which is linear both in
pea and o . (The slight variant in the choice of f and g was
designed to achieve this goal):

[(T ;f) T a;?],

a” + 2| + - -
a2 A a2 aZ A3
Sl - A -
+2C[—-A—(—K"‘G, ) +?}+
+c2[§&(%-&)«%]30 (148)

To ensure that the inequality yields the least upper bound on ;3l(over the

probability densities of given 1 , a , a° , and p,a ), we rewrite (148)
as
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F(c) > ??@—}5—‘ (149)
A

and minimize F with respect to ¢ . We have

e 2 72?2 .z b [ - -2
w0 - | 5 i | ew T (-3 F) E]
+ CZ[EE(% - &)- %] (150)

The curvature of F is positive by virtue of (142) and the first deriva-

tive vanishes at ¢ = co

7 (5 - aa?) - &
o = L (151)

0 ———— - -
pea (1 - 8a) - a

Substituting this value of ¢ into (149) we obtain, after some algebra,
a” < a, as given in (144).
We now examine the equal sign condition, i.e.,

f = Ag (152)
Using (145) and (146), we have
L, 2 L
ps(a” +¢c)=Aga (153)
Since p, has no zero for o between 0 and 1, Eq. (153) gives

a2 -ax+c=0 (154)

We now determine X and ¢ by averaging the characteristic equation

(154) and also multiplying by o and averaging:
;?.- ad +¢c=0 (155)
o3 - aln +ac =0 (156)

We have as solutions of (155) and (156):




{ c = a ;? - ;ZZ (158)
! '—2' _2 i
i a - a |
f It is clear from (154) that the probability density that realized the
{ equality is the two-mixed cells distribution:
Pla) = elé(a - al) + ezé(a - a2) (159)
where [1
a4 + a, = A (160) ]
’
@@, = ¢ (161) ¥

as given by Eqs. (157) and (158). 1In order to complete the realizability
proof of the equal sign, we must show that (159) has all four parameters,
€1 5 €p » &y and o, between 0 and 1.

We first discuss the locations and prove that
a; o, >0 (162)
1
a0, > 0 (163)
and a0y < 1 (164) |
i

Clearly, Eqs. (162), (163) and (164) imply that o and a, are between
zero and one. To prove these inequalities, we multiply the characteristic
equation for (159) by an arbitrary function F assumed similar to o . We

have
Fc? - ‘Fa'(al +ay) + Falaz =0 (165)
and (F = 1)
;2- - Ez(m1 + az) + o, =0 (166)

Equations (165) and (166) determine a; +a, and a0,
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'
{
2. = 2
0.1+0.2 = Fa -1 -_Fa (167) ;
o -1-F-.a |
and :
5Fo’ - Fa ol {
Ao, T (168)
Fa-1-F -a
By using Tchebycheff's inequality, we find
Fa-1>Fa (169) ‘
because F is similar to o . Also 51
FaZ .15 F ol (170)
because F 1is similar to az and renormalizing (169) by o :
Fol - a>Fa- ol (171)
This completes the proof of Eqs. (162) and (163). ?
To prove that agd, < 1 , we need
GFf -Faal<Fa-1-F-a (172) 1L1
We rewrite (172) as
CFya)) >0 (173)
with ¢ given by
w(a)=a-i-&+a;2--a2& (174)
But ¢ 1is similar to a because
v' (o) =i+a2 - 200 (175)

is 1inear in o« and




p'(1) = (1 - 5)? + ;Tf >0 (177)
so that
p'(a) >0 for 0<ac<1 (178)
We also note that
v =0 (179)
Applying Tchebycheff to (173)
Fo>Fy=0 q.e.d. (180)

We have completed the proof that o and a are between 0 and 1.

We note that ay + a, and alaz can be expressed either in terms of
a or in terms of p,a . This shows that the two-mixed cells distribu-
tion realizes either (1, a, ;? , a3) or (1, &, ;?; PL) .

We now prove that the weights € and €) of Eq. (159) are between
zero and one. By introducing

a, = a - 8, (181)
a, * a + 62 (182)
we find that
a' =0 (183)
imply
§ 8
2 1
€, = =——=——— , €, T F—r— (185)
1 61 + 62 2 61 + 62

A simple calculation further shows that

l2 -
e . o .
Since a is given (and positive)}, 61 and 5, have the same sign. It

follows then from (185) that €, > 0 and €y > 0 . Since their sum is 1,

both El and 52 are between zero and one.
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Another important family of inequalities is the one pertaining to pE .

Clearly, from Cauchy-Schwarz

1025757 (187)

This is a lower bound on pE for given p,a . The tree of Figure 23 yields
the relevant bounds except for the lower bound on pj for given a, a°,

.2 . We proceed to prove this bound separately.

We choose
g = “Pxq %o (188)
f=¢+g=p.la- az) - Pupo (189)
where
¢ = (Px = 0yq)la - a3) (190)
_ 1
P17 T- Ba) (191)

Thus, Eq. (190) is the characteristic equation for two mixed cells with one
of the singularities expressed in terms of p. We use the equation of state
relations of Appendix 3 to eliminate products of p, and o (to a power).
After some algebra, we find

2

£ = 2 <02 - %) + 0a % (pyq + 1)(02 - %)"

+ azp,z,,l + %apl* + <z12— + sz*l - zp*Ala2> (192)
o - (p*laz)z (193)
fg = (oupe) [0 (3 - ) - 1 - pupa ] (198)

By using the Cauchy-Schwarz inequality, we find
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7 1)2 — 2 1\, 2.2 , =2 1,20 2Pmy% .
["*“2’5 * B g (ox*0(ogm 1)+ 6Pl + a0y ¢ AR |

— - 2
2 [p*(-A]:--GZ) T 0Py - %:l (195)

The fact that the inequality represents a lower bound on o, follows from
the fact that its coefficient on the large side is positive. The fact that H
the bound is the greatest lower bound for given a , o , and p,a follows
from the realizability of the two-mixed cells distribution which was
obtained above, Eqs. (152) through (186).

The last family of inequalities that we consider are bounds on the mass
fraction, given the mole fraction. From the tree of Figure 24, several
follow.

~




V. MODEL SELECTION

In this section, we first describe our process for selecting a model
probability density. Having chosen a model with a free parameter that is
adjusted to minimize the average entropy (density), we compare several
features of the model against the data reduced and presented by Konrad.

In selecting the model, we find

1) At the edges of the mixing region, the experimental probability
distribution is sufficiently skewed to rule out symmetric models.

2) The experimental probability for finding pure Ny and pure He is
sufficiently large to rule out models that do not have strong spikes at
molar fractions close to one or zero.

3) We find that the third moment is rather insensitive to the selection
of a model providing the model is statistically correct.

We conclude that the most satisfactory model distribution is one for
which the average entropy density is minimized.

With regard to the skewness factor, we consider first a square hat in
A (Figure 25). The probability density has three parameters and it is
thus fully specified by T , A , A . The moment equations are

1

1 =f P(A) dA = H(R - L) (196)
0

- R+L

A= (197)

R2eLl@er s 1?) (198)

with solutions for the edge locations

R=A+8, (199)
L=A- 8 (200)
where
5y = ny (201)
and finally for the height
H= — (202)
2/ 3 A2
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The fit to Konrad's equal mass flow is shown in Figure 26. Unacceptably
large probabilities are found for negative molar fractions. The origin of
the difficulty is the large skewness of the edge-flow distributions. The
point is illustrated in Figure 27 by a simple triangle distribution that
cannot be fitted by a legitimate square hat. The region of moments,

A, A'S, for which a square hat is statistically acceptable is readily

obtained from R <1 and L >0 . This region is shown in Figure 28,
together with the region allowed by the less restrictive but still symmetric
model

A'" =0 (203)

The various boundary curves are given by the following functions of A :

1: A3
2: B3
3: 2R (204)
4 282
5 A(1 - A) = AB
In Figure 29, we show the value of the ratio
I = gmodel. (205)
experiment
where
Q = ABZ (206)

The value of QU corresponds to the upper bound for Q given A and
A% 3 similarly QL corresponds to the lower bound for Q , given A and
A~ . The graph emphasizes the fact that towards the edges of the mixing
region any symmetric model would be in disagreement with experiment,

A model with much less symmetry and some promise of describing a flow
with low mixing is defined by

0=(AB)' =AB' +A'B+A'B' - A'B' (207)
Equation (207) is a quadratic for A' once B' 1is eliminated (B' = -A')
and the resulting probability density is given by
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P(R) = €18(A - A)) + e)8(A - A)) (208)
where
_1-1D _14+0D
A1 e B A2 i (209)
_1/1+D %
€ -ﬁ< > -A) (210)
_1/s 1-D
o (i 152) )
and

D=/1- 488 (212)

A2 = B1 , Al = 82 (213)
Furthermore, Eq. (207) is exactly equivalent to the requirement
A%82 = min (for fixed A, AZ ) (214)

In Figure 30, the values of ¢, and of €, are superimposed on Konrad

probability densities and are ieen to follow the patterns reasonably well.
The model is not acceptable in view of the experimental values for pure He
(Fig. 31) and pure N2 (Fig. 32). The model given by (208) yields zero
values for both probabilities.

In view of the experimental probabilities for pure species, the model
given by P3 in Figure 33 offers a chance with both pure cells built in.
Comparison with the probability density is shown in Figure 32 and is
tolerable. Comparison with the pure species data, Figures 31 and 32, shows
however that the weights of the pure cells are too weak.

Since the entropy of mixing is clearly quite low in the flow, the model
of Figure 7 was made determinate by minimizing the entropy (density) of
mixing with respect to A3 . The resulting model is defined as follows.
The weights are those given by Eq. (30) and the bounds on A3 are those of
Eq. (31). For this model, the quantity

s M)/R)

A- A

is sketched in Figure 34. The quantity n is even in A3 with a minimum

n = (215)
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of approximately 2.76 at A3 =0.5. A3 is therefore determined as
follows. We call the bounds of A, L and U . Then

3
= 7
L=A'5 (216)
1-A
u=A (217)
A
Minimization occurs as follows:
If u<% , then Ay = U (218)
If L<i<u, then A, =1 (219)
2 ’ 32
1 =
If <L, then Ay=L (220)

The resulting weights are plotted in Figure 35 and show a good pattern
relative to the probability densities; furthermore, the pure species plots
of Figures 31 and 32 are in reasonable agreement with experiment. The
fact that the model distribution is somewhat He rich is in qualitative
agreement with the lTow mixing allowed by large-scale transport and with the
data on pure species.

By way of contrast on this point, in Figure 36 we show the entropy
maximized for the same cell structure. It is in poor agreement with the
pure spgcies probabilities.

In Figure 37, we give the T ratio of Eq. (205) for the minimum entropy
model. Although the agreement with experiment on this point is low (~50%),
the opposite extreme of maximal entropy is roughly as good on this count.
Statistical consistency seems to be all that is needed to obtain a reason-
able T . This point will be taken up again later in connection with the
flows with large mass differences.

In Figures 38, 39 and 40 we give the average entropy density, its
fluctuations and its second moment to give an idea of the actual flow
values and their model values.

We now turn to the discussion of the model chosen for large mass
differences. In this case we have at our disposal both the mass fraction
and the density moments (equivalently the mass and the molar fractions).

We have thus chosen a four-cell distribution with one free parameter,
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Figure 41. We give T=1, a , ;7 » Py and pE . We note that for

2 : . .
Pxpin Yequires two mixed cells (a discrete

given a , ;7 and p.a ,
. . . . 2 . .
distribution) and similarly, Prmax requires two pure and one mixed cell
(again a discrete distribution). The algebraic solution of the moment
equations can be summarized as follows. The weights are given in terms of

parameters Ci and u; as follows:

u - u;

e = C1 T (221)
uE - u

€y © C2 Y (222)
u§ -u

€q = C3 TR (223)

uz -u
€q = C (224)

4 u(l - u)(u - a3)

The singularities of the denominators correspond to one of the mixed cells

degenerating with a pure one or the second mixed cell.
The parameters Ci and u? are in turn given by

C-! = m(l'Aa:;)

1-A
c, = (225)
17 & _—
3-1-11-pm (1-4) (1- day)
c2=QL [ il ] 3 (226)
Aa3
1-0a.)| pea (1 -4) -a
C3 = ( aJ [p*a :I (227)
Aa3(1 - a3)
C4=&(%-11-a3)-IAA(I-AOL3)5:—0T+G_LE (228)
and — l-Aa3 L
u'i:a S S (pua - @) (229)

(-l"(l‘A0.3)a-*a

e SO

2am ot

i
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=2&-1-;?-1-:—5-A—a—3—[&-p*_a(1-A)]

u (230)
1-a-(1-280)(1- 0. [1-2])
-1l GE - @)
uj = — — (231)
a - (1 -4) pea
uk =3 (232)

The concentrations are related by the following formula which is derived
using two s cells and two a cells in the characteristic equation

2/ 2 2 1 1
<°‘ (o5 - o 1 5] 1-1‘A>> - “3@("* ; "*[ o 1-A] ' 1-A)>
2 j 1 2 l 1 1
<a(p* -~ Pu [1 + ll—AJ+ 1-A>> - a3<p* - Py l.l + l-AJ + 1-A>

(233)

u:.‘

The minimim of the mean entropy occurs when € = 0 Tleaving a "helium

rich" model. If we set

- *
u = ug (234)

using Eqs. (233) and (229), we obtain a quadratic equation for a; . Its
two roots correspond to the presence of two mixed cells and the interchange-
ability of cell 3 with cell 4. The model is thus fully determinate.

We now compare the model with the two flows of A # 0 given by Konrad.
We give

1) the ratio T of Eq. (205) (Figs. 42 and 43),

2) the probabilities of pure species (Figs. 44 and 45),

3) the locations and strengths of the Dirac functions superimposed

on the Konrad densities (Figs. 46 and 47).

On all three grounds, the chosen model fares quite well. By contrast, we
show in Figure 48 a maximal entropy model. As was the case for A =20,
the resulting model is substantially worse than the minimum entropy model.

As a final indication of the stringency of our statistical bounds, we
give in Figures 49 and 48 the bounds on the (mass fraction) moment ratio
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with Q = ;E? . The bounds are of the same order of magnitude as those

given in the molar plots. The successive tightening of the bounds, given
2, 3 and 4 moments, is clearly indicated. The bounds on «” that were
used in the plot were not fully included in the theoretical discussion.
They are recorded below for completeness.

L<ad<U (235)
For given a , ;2., P40
- 2 [a —1-8 =-_727
(a-a)[—-pa -a+a]
L:;?_ _A_* 4 (237)
a - *('.!(l‘A)
—_ - =52
p*—a[a(l—Aza -&(B-Aa)]-aaz-Aaz + 53
U= (237)

Al ,a (1 - Aa) - a ]
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Proof.

APPENDIX 1. CONVEXITY OF MOMENT DOMAINS

Let El , ﬁz € M be given.

For A € (0,1) we show that

m= Ny + (1 - A)ﬁz €M
Write my and ﬁz as

El (cg s ¢y » Ca_1)

m, = (dg » dy > s dpq)

(1.1)

(1.2)

(1.3)

Then by computation (i.e., substitute (1.2) and (1.3) into (1.1))

->
m= Acy+ (1- >\)d0 s Ac1+-(1- )\)d1 s oo

Py )\Cn_l + (1 - A)dn_l

. -> N N
Since m1 € Mn s there is a non-negative measure, P1 , whose

moments are the components of 51 :

> = (1
ml - (CO k4 cl ’O-"cn_l) - ( 1

1
lan =.’. anPl(a) do
0

Similarly there is a Pz(a) such that

where

&+ _ 423
m2 = (do ] dl ""!dn_l) = (

Consider a new non-negative measure:

P =P+ (1- )P,

1,




e e

- (Ai (-0, dara-nG, . kT (l-A)Zan'l)
. |

= <)\c0 + (1->\)d0 , Acl + (1-A)d1 s vens )‘Cn-l + (l-A)dn_1)>— m 1

L]

|

Therefore, the point m is realized precisely by the measure P; I
that is, m € M, - |




APPENDIX 2. STANDARD PDF's (s = p, of Eq. (75))

1. 1=1 given, a =1

2. - _ 1 — _ 1 2 _ 1
a @’ =1, s=q—Fs Sa=yTg, § T ——
(1 -4)
1
2. 1=1given, a=0
B a7=0,§=1,'s—o[=o,?=1 ;
] .

3. o given, o =a

ol B S =q T % +1 :
a B -

- _

Sa—l_A

w
)
]
JQ'
+
—
]
joX |
|
—
+
[oX]
>
N
[}
>

4, o given, o = 52
= -1
B ST
a -
— o
SQ = T
1 1 - Aa
- S
(1- aa)
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-2
5. &,;?given,§=_°‘ _2_=min
a - Ao
B s =1+ Asa
=
= Z
R Z_J -5, &
2
;T? 52 ;? o Li - Ao ]
2 2
[s ) o

6. o, a” given , Auxiliary B8=1-a
Eﬁ-= 1-2a+a
a ——
oB
: ®=a-d
Y . -z - 7
E—:% Sa = of - Ao o) o opax
g’ g (1-A)<1—&-A[_-;2-])
s =1+Asa
. z2
2 -8B -8 1) LB
= \1-3) "5 &F
B B 1-4A=
R
7. &,;Z,EE given, sZ is maximal
" Z-li8 wog
a) a, =
a8 3 - (1-A)sa
S -3 7 7
1 %2 &3 (b) e Sl NI S S -
1 1-03’2 a3 > 73 a3l-a3$
(c) §=1+asa

(d)




8. a ;? » sa given, :2- is minimal

(a) s =1+Asa

%1 (% (1-Aa)[§(1-Aa)-1]- 3(al - 32)a2
&1 & )

Loy
(2]
S”
O
—
H
x
+
-
(o]
n
[}
N[‘f
b
—~
(o]
—
-
O
~N
v
o
St

(@) 8, §1
d) g, = s Ep =
J 1 61+62 2 61+62
E a1=u+61,a2=u-62
€ €
() = Ly 2
(1 - Aal) (1-Aa2)

it 4., et




APPENDIX 3. RELATIONS IMPLIED BY THE EQUATION OF STATE
(REDUCTION FORMULAE)

The following relations are given as instantaneous; they also hold as ‘

averages.
1. Py - Bp,a = 1
2 f
2. Pl =%~p*a-%a=—lz-p*-%a-—17 '
A A ’;
3 pu3=_1-pu-_1_a-_a2=p_*-_a__.a_2_-_l_
* *
A2 AZ A A3 A2 A A3
4 1 a 1 2 13
4 PRl = T PO = -=oa -F0
* 3T 32 A
1 1 1 2 1 3 1
= =P, - a~~5a -F+a -
Rt Rt A
5 oEa=-A-oz-%p*
o3 = L (6, - 1
23 _ 1 2 1 1
psa” = 3 (pp - 1) - S5 (p, - 1) + S5«
* A3 * Az * Az
24 _ 1 2 2 o
ped = g (o= 1) - F o - 1)+ Fa+=
* -AT * 4 \Fx A3 A2
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APPENDIX 4. APPLICATION OF INSTANTANEOUS BOUNDS TO ENSURE CORRECT -
STATISTICS FOR SOLUTIONS OF THE RATE EQUATIONS f

We consider a simple example of second-order chemistry in which only
two species participate (although the reaction collision requires three
bodies as dictated by energy and momentum balance). The reaction chosen is

0+ 02 -+ 30 (4.1)

which idealizes the result of embedding a trace of molecular oxygen in a
bath of hot atomic oxygen (the dominant reaction is dissociation).
The rate equations are

dn
02 _
at - Ke Mo Moz (4.2)
dn0
T = +2Kf no noz (4.3)
which have the conservation law
Ny ¥ 2n02 = ¢ = const. >0 (4.4)

corresponding to the conservation of the total number of oxygen atoms, free
and bound in pairs. Equation (4.3) can be rewritten as

dn
0_ = -
- 2Kfn0n02 Kfno(c no) (4.5)
Introduce the number fractions
n 2n
=0 = 02
B = c A C (4.6)
Then, (4.4) implies
A+B=1 (4.7)
and, since A and B are positive,
0<A<1,0<B<1 (4.8)
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We rescale for simplicity the time by Kfc and obtain from (4.5)
%’ti = -AB = -A + A2 (4.9)

The last equality follows from (4.7). From (4.9) we find the equivalent
pairs:

=..K+—2-

X A (4.10a) ',
A2 = 2nZ + 243 (4.10b)
and
B=+5-8° (4.11a)
E? = ZET - Zg§ (4.11b)
First-order closure consists in using (4.10a) together with a model
—2'- -
A% = F(A) (4.12)
We apply the bounds on ;7 derived in the text (Section II)
A2 5?5/1 (4.13) E,
|
and prove the following.
(I) Given A(0) , the solution of any model
R=-%+FR) (4.14)
where F satisfies the bounds of Eq. (4.13), is bounded above by the
solution of
F=-A+A=0 (4.15)
and bounded below by the solution of
K= -R+ R (4.16)

(11) Equation (4.15) gives the exact solution of (4.9) with the initial

probability density
54




AR

P(A) = (1 - A)S(A)) +AS(A - 1) (4.17)

0

and Eq. (4.16) gives the exact solution of (4.9) with initial density

P(A) =6(A -A) (4.18)

Subscript is used to denote the time at which the variable is considered.

(III) There exists a nonextremal choice of F which does not yield the
exact solution of (4.9) for the corresponding density. The exact solution
of (4.9) is

A et
0

- " HA) (4.19)

Ay = t 0

t -
1- A0 + A0 e

The initial value of A, Ao is conveniently expressed in terms of the
value of A at t by inverting (4.19)

A e+t

A = t

0 +
1- At + At e

= = o(A,) (4.20)

which can also be obtained by time reversal of (4.9).
We now consider the above points successively. We write the general
solution of (4.14) as

t
l-\t =t Z\o +f e'(t'x) XE(A) dx (4.21)
. 0
where A2 is understood to be a function of A . Since
e {250 for all 2 (4.22)
we have from (4.13U)
t
f e‘("'”[?(x) - A(A)] di < 0 (4.23)
0
and from (4.13L)
’ (t-2)
-{t-A -
.’. e [R’(x) - AZ(A)] dr > 0 (4.24)
0
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Hence,
t

t t
f e (MR @ 5f e (tN2Z0) a _<_f e UNRG) ax (4.25)
0 0 0

tﬁo to each term of the double inequality, we find

r*
e‘tAo o | MRy o
0

t
[ e'(t'k);?

If we add e~

1A

(1) da

A

t
<e 'R +f e (U MA) a (4.26)
0

which proves our first proposition; i.e., the solutions of the extreme
models are the bounds of the solution of any (statistically allowed) model.
Furthermore, the exact solution (4.19) when averaged with (4.17) gives

A, = Z\o (4.27)

t
which is indeed the solution of (4.15). Also, (4.19) when averaged with
(4.18) gives

) A e
A, = Q (4.28)

which can be readily verified to be the solution of (4.16). We have thus
proven our proposition II and thus demonstrated that the extreme models
represent exact solutions. Therefore, combining I and 11, we conclude that
any statistically correct choice for the model F(A) will remain statis-

tically correct.
A simple example of III is the following. Model F(A) by the mean

Mod ¢ . -
P —;-A2+%-A (4.29)

A corresponding density is

56

Yy




P(A) = S 6(A - A) + 1 [(1-;‘\0) 5 (A) + A B(A - 1)] (4.30)

A short calculation shows that the solution of the model equation

i=l+[%#+%ﬁ] (4.31)
is
A e't/2
A, = 0 (4.32)
t = = -t/?
1- Ao + A0 e

while the average of (4.19) with P(AO) given by (4.30) is

1 A -t
" o € 0 et
A, = = P(A) A =R | 1+ (4.33)
0 1- A04-A0 e 1-A +A e

which does not coincide with (4.32) although (4.32) is properly bounded as
discussed above. ‘

The bounds obtained on At from first-order closure (i.e., given Ao
only) are loose bounds. We can, however, proceed to second-order closure
and tighten them by giving Ao and ;Z . The statistical bounds on A3

(from Section II) are

e

. 2
<p2_(A-A) (4.34)
1-A

W3

b

<

1|
nN

The equations for A and ;7- are given in (4.10a)_and (4.10b). Second-
order closure corresponds to choosing a model for A

A3 - G(R, A% (4.35)

which we assume subject to the bounds (4.34). We choose G to correspond
to the lower and upper bounds in (4.34). For the lower bound, we find that
the quantity

K = (4.36)

L.

PR

is a constant of the motion. Integration then yields (AO and ;g given)
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A, = 0 (4.37)

The density corresponding to (4.34L) is (from Section II)

A'02 A2 5

P(A) = S(A) + 25 -2 (4.38)
R | 00 = \0 A
0] Ao o)

A simple calculation shows that the exact (4.19) averaged with (4.38) gives
(4.37).

The upper bound is treated conveniently in terms of 4.11a) and (4.11b).
In this case, the constant of the motion is

=2 rer 4
KU B _1-2A+A (4.39)
g?- 1-2A+ ;?
The corresponding density is
7 A
P(A)) = = 8(Ag - 1) + — 8{A, - — (4.40)
2 Z\° s
) 0 0

=2 +t
- o €
Bt = — (4.41)
= 2 +t
B0 - B0 + Bo e
which can be written as
A R4 (R - R et
A, = 0_? 0 0_7 (4.42)
z 3 -t
1- 2A0 + A0 + (A0 - Ao) e

The bounds given by (4.37) and (4.42) are substantially more stringent than
those given by first-order closure.
As an example of nonextremal choice of second-order closure, we consider
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—

A s (14 K)(;\—f - A% + A3 (4.43)

corresponding to the density (frozen A model of Section I1)

Al al Al
P(R)) = = 8(A - 1) + =2 6(A)) + | 1 - =% 6(A - A) (4.44)
B0 AO AOB0

The solution of the model equation is obtained by exploiting the integral
resulting from

9';—=2& (4.45)
da ’
and is
re 1 Y
At ) 7" Mt Ao X
i _1_ /1 37,32 -Zt(' 1, /1 32 -2)
- 1 /1 2.z etz 1,/1 =2
A0 -5 2 Ao + A0 e (Ao > + 7 AO + A0 )
while the exact solution (4.19) averaged over (4.44) yields
- ;T? Al A et
A= =%+ (1-% L (4.47)
Bo AoBo 1 - A0 + A0 e
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Figure 1. Example of P(A) and of its box diagram
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Figure 2. Statistically allowed values of the first two total moments
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Figure 4. Experimental values of the second total moment and its
theoretical bounds
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Figure 5. Interpretation of B axis on a stretched y/(x- xo) axis.

This interpretation eliminates y(x - xo).
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Figure 6. Representation of an arbitrary (A, ;7)

by extreme distributions
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Figure 9. Experimental values of 83 and its theoretical bounds
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Figure 10. The domain for positive (negative) skewness for given
A and A'2 . The presence of experimental points in
the hatched domain rules out the A'S = 0 model.
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Figure 11a. Third-order mixedness (S =7, r = 1)
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Figure 11b. Third-order mixedness (S = 7, r = 0.38)
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Figure 13. Kurtosis for A =0 (K = 3 for normal distribution)
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Figure 14. Relation between molar and mass fractions
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Figure 16. Specific entropy of mixing
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Figure 43. Normalized third moment compared to experiment for
pz/pl = 7»0’ UZ/UI = ]-0
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Figure 44. Predictions for pure N2 compared to experiment
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Figure 45, Predictions for pure He compared to experiment
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Figure 49. Third moment compared to experiment for pZ/p1 = 7.0, u2/u1 = 0.38
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Figure 50. Third moment compared to experiment for pz/pl = 7.0, 2/ 1" 1.0







